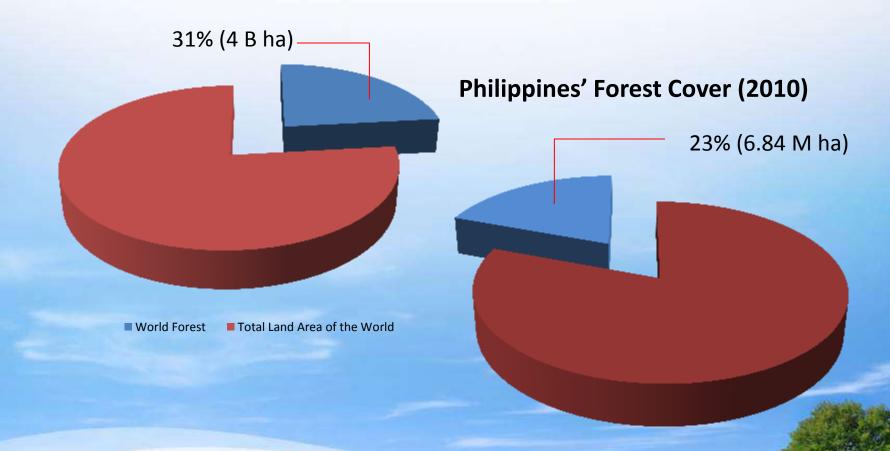

NATIONAL GREENING PROGRAM [NGP]

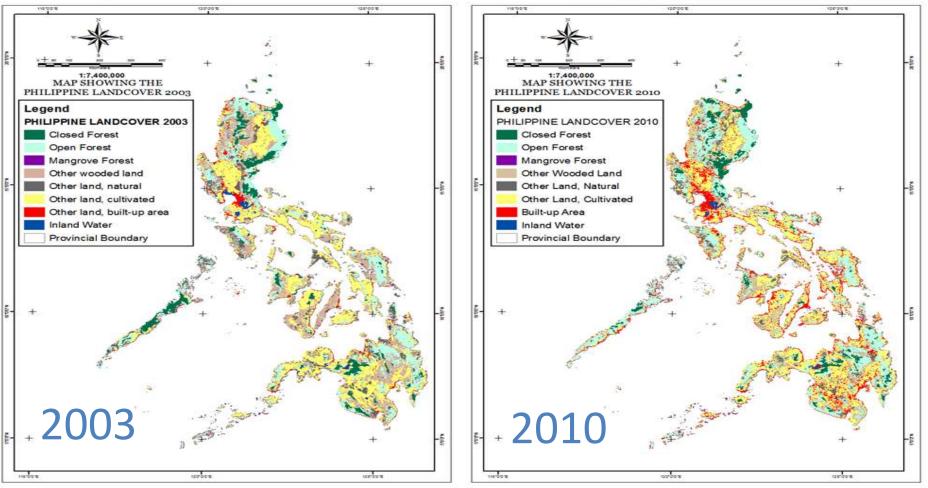
RICARDO L. CALDERON, CESO III Director, Forest Management Bureau National Coordinator, National Greening Program (NGP)


STATE OF THE FOREST

LAND CLASSIFICATION


FOREST COVER

World's Forest Cover (FRA 2010)


CURRENT STATE OF THE FOREST

Forest Cover change of the Philippines

 Forest cover decreased by 328,682 ha i.e. from 7,168,400 ha in 2003 to 6,839,718 ha in 2010 or an ANNUAL FOREST COVER LOSS of 46,954 ha.

LAND COVER 2003 AND 2010

Closed forest cover decreased (degraded) by 626, 840 ha (24.48%) from 2,560,872 ha in 2003 to 1,934,032 in 2010

Open forest cover increased by 234,988 (5.39%) from 4,360,166 ha in 2003 to 4,595,154 ha in 2010

Background

- Executive Order No. 26 signed on February 24, 2011
- Guidelines issued on March 8, 2011
- Launched on May 13, 2011

STALACARAN PALACES

BY THE PRESIDENT OF THE PHILIPPINES

EXECUTIVE ORDER NO. _20

WHEREAS, poverty reductive, securce conservation and protection, productivity enhancement, climate change mitigation and adaptation, are among the priority programs of the government.

WHEREAS, there is a need to consolidate and harmonize all greening efforts such as Upland Development Program, Lurriang Pilipinas and similar initiatives of the government, divi society and private sector under a National Greening Program.

WHEREAS, the Department of Environment and Natural Resources (DENR) is the primary agency responsible for the conservation, management, development and proper use of the country's environmental and natural resources;

WHEREAS, the Oepartment of Agriculture (DA) is the lead agency to boost farmers' income and reduce poverty in the rural sector;

WHEREAS, the Department of Agrantan flations (DAR) is the load agency in the implementation of agrantan reform and auxiliaritable rural development programs;

WHEREAS, the DA. DENTI, DAR pursuant to Joint Memorandum Circular No. 1 series 2010 bave adopted a Convergence Initiative to integrate and strungthan development framework between and among national government, local government agencies and other elakeholders, wherein complementary human, physical and financial resources are efficiently and effectively deployed.

WHEREAS, Exacutive Order No. 23 series 2011 has matidated the DA-DAR-DENR Convergence Inflative to develop a National Greening Program in poperation with the Department of Education (DepEd), Commission on Figher Education (CHED), Department of Social Welfore and Development (DSMID), Department of Bodget and Managemant (DSMI), private auctor and other concerned againcies and welfullione.

NOW, THEREPORE, I, BENGNO S. AQUINO III, President of the Ptelepinus, by vitue of the powers wasted in me by law, do hereby roler and declare the implementation of a National Evening Program (NGP) as a government priority.

President Aquino Planting a Narra Tree during the NGP launching 2011 at DENR Compound in Quezon City

Coverage

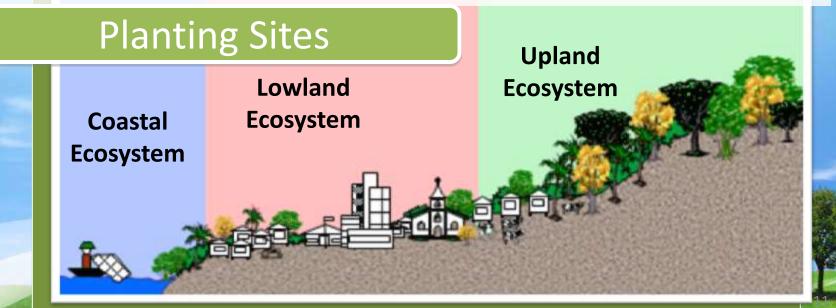
The National Greening Program shall plant some 1.5 Billion trees covering about 1.5 Million hectares for a period of six (6) years from 2011 to 2016.

INGP: BEYOND REFORESTATION

OUR MISSION

- Food Security
- Poverty Reduction
- Environmental Stability
- Biodiversity Conservation
- Climate Change Mitigation & Adaptation

Bringing together agencies, efforts, people:



INGP FRAMEWORK

Species

Species selection depends on objectives; preferably indigenous/native/endemic species; for the production zone: *Species- Site- Market Matching* for the protection zone: *Indigenous/native/endemic species*

NGP AREAS FOR DEVELOPMENT

Forestlands

Aurora Memorial National Park

Divilacan, Isabela

NGP AREAS FOR DEVELOPMENT

Ancestral domains

Civil and military reservations

Port Magsaysay

NGP AREAS FOR DEVELOPMENT

Urban areas under the greening plan of LGUs

Inactive and abandoned mine sites

NGP STRATEGIES

□ Social Mobilization

Bringing together agencies, efforts, people: **Convergence Works.**

OUR PARTNERS

Department of Traisportation and Communication www.dott.gov.ph

Commission on Higher Education inte theit pos pit.

Technical Education and Skills Development Authority aviants becall & going gots

Department of Science

and Technology

mene direct prov pit-

www.chd.pox.ph

were doh pex ph

Department of Health

Department of Public Works and Highways wate down box ph

wate dits provide

Department of Interior

and Local Government

Reating the Contention of the Inown hits plu ph

Defense

Department of Builget and Management www.dbm.gov.ph

Harmonization of Initiatives

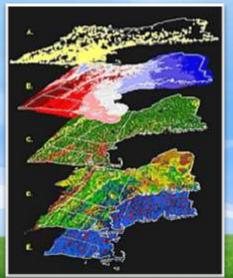
NGO > FPE > PTFCF

NGP STRATEGIES

Provision of Incentives People's Organization

 651 POs were engaged in the NGP Activities

IEC, Social Preparation, joint planning & Site Identification


Seedling Production Site Preparation Maintenance and Planting Protection Harvesting, Utilization, Re-planting

Peso

NGP STRATEGIES

- Maximization of available Science and Technology
- CLONAL AND MECHANIZED NURSERY
- BIO-FERTILIZERS /MYCHORRHIZA
- GIS MAPPING and GEOTAGGING
- ACTIVE NGP OFFICIAL WEBSITE (www.ngp.denr.gov.ph)

NGP COMMODITY ROADMAP CY 2013-2016

NGP Commodity Roadmap CY 2013 - 2016

Region	Timber	Fuelwood	Coffee Ca					Fruit Trees	Indigenous Species		Mangrove				
				Cacao	Rubber	Bamboo	Rattan		Protection Forest	Protected Area	within PA	outside PA	Urban	Mixed Commodities*	Total
NCR												8			8
CAR	44,000	20,000	9,000	5,000	800	2,600	1,000	14,000	1,300	1,435					99,135
Region 1	8,000	20,000	1,000	2,000		5,000		4,000		850	510				41,360
Region 2	10,000	10,000	12,000	12,000	4,000	500	400	12,000		5,414	40	100			66,454
Region 3	10,000	15,000	5,000	5,000	4,000	10,000	5,000	10,000	10,000	18,004	75				92,079
Region 4	20,000	10,000	5,000	5,000	5,000	10,000	10,000	10,000		23,794	266	3,500			102,560
Region 4	20,000	15,000	5,000	5,000	5,000	1,000	1,000	20,000	13,000	3,399	14,119	5,000			107,518
Region 5	20,000	10,000	4,000	4,000		4,000	500	20,000	1,500	2,490	500	5,000			71,990
Region 6	20,000	5,000	1,000	1,000	800	1,000	2,000	8,000		6,000	600				45,400
Region 7	30,000	14,000	4,000	3,000	2,000	2,000	1,000	8,000	6,000	1,100	700	1,200			73,000
Region 8	15,000	15,000	5,000	5,000		4,000	5,000	15,000	4,000	50,400	500	4,000			122,900
Region 9	25,000	10,000	5,000	1,000	30,000	1,000	1,000	5,000	1,500	1,265	240	500			81,505
Region 10	20,000	5,087	2,000	2,000	8,200	2,000	1,000	5,000	- V	5,844	31	300			51,462
Region 11	50,000	10,000	5,000	5,000	10,000			15,000		2,300	140				97,440
Region 12	25,000	20,000	10,000	2,000	25,000	10,000		15,000		3,735	189	300			111,224
Region 13	29,314	1,489	14,903	3,725	16,394	745		7,786	4,205			593			79,154
Subtotal	346,314	180,576	87,903	60,725	111,194	53,845	27,900	168,786	41,505	126,030	17,910	20,501			1,243,189
2011	47,711	1,542	2,554	1,477	5,675	571	78	9,741	7,867	2,535		1,315	1,250	46,242	128,558
2012	33,887	2,875	2,100	768	3,930	1,461	902	3,367	5,100	8,300	144	711	2,009	156,209	221,763
Total	774,226	365,569	180,460	123,695	231,993	109,722	56,780	350,680	95,977	262,895	35,964	43,028	3,259	202,451	2,836,699

Recommended by:

RICARDO LI CALDERON

Director, Forest Management Bureau National Coordinator, NGP

ESTO D Undersecretar Staff Bureaus

DEMETRIOL IGNACIO Undersecretary **Field Operations**

Undersecretary

Policy and Planning

Approved by: MANUEL D. GEROCH

Secretary

2011 Mahogany Plantation, Kimarayag, Pigcawayan

Local demand based on Master Plan for Forestry Development (2003)

In 2010 – 3.73 M cu.m.

In 2021 – 5.0 M cu.m.

Wood and Paper Products (USD 900M)

Need 750,000 hectares to be sustainable

Higher consumption of wood as construction material instead of steel & concrete in the next decade in the light of climate change (Philippines Forestry Outlook Study, 2009)

Fuelwood

- Among the major requirements of the country that has been overlooked in most area development plans is **wood energy.**
 - 9 million households or 46% of the 20.2 million households in the Philippines uses fuelwood (NSO 2012)
- Fuelwood requirements household and large scale industries (i. e. Tobacco flue curing, bakeries, potteries, brick making and sugar production amounts to 35.46 million cu.m/year with an estimated value of 11.34 Billion pesos

Fuelwood

- 35.46 Million cu.m of Fuelwood
- = 15 M. Tons oil equivalent to \$ 5.2s5 Billion
- = 210 Billion pesos
- = 50% of our oil imports in 2012

Source: Oil_import.html

Bamboo and Rattan



Executive Order 879 mandates the use of bamboo as planting material, at least 20% of reforestation species annually MPFD projected demand for rattan for furniture by 2015 at 61.9 million lineal meters (low end) to 79.48 million lineal meters (high end)

Industrial Crops

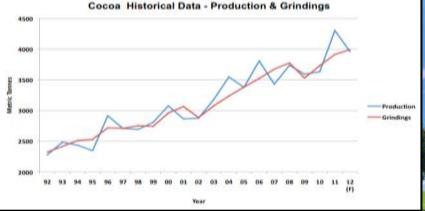
Coffee

Coffee ranks as 2nd most consumed beverage in the world

Local demand per DA for coffee beans is pegged at 64,000Metric tons, valued at PhP 2.5Billion

Ninoy Aquino, Kalilangan, R10

Industrial Crops Cacao



Culian, Mati City, Davao Oriental, 2012 Cacao

Demand for Cocoa is expected to grow in coming decade between 2.5% - 3% p.a., or around 100,000 MT's p.a., following growth pattern of worldwide GDP.

Local demand for cacao exceeds production

In 2005, local consumption reached 50,000 metric tons

Over next 10 years the world will need additional 1 MT of Cocoa

Pamplona (2012)

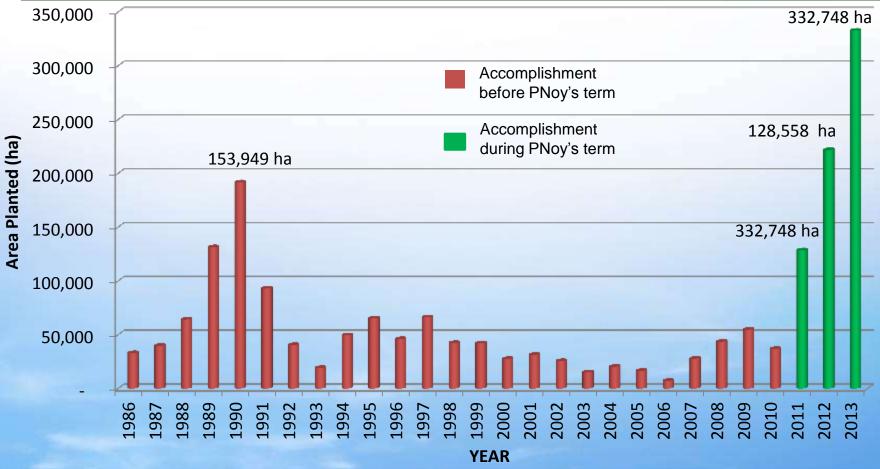
By year 2020, the demand for natural rubber (NR) is expected to increase to 16.4 M metric tons (around 30%) from the current demand of 11.3 MMT

Production of NR is estimated at 14.3 MMT, **leaving a short** fall of 2.1 MMT

Rubber is a crop with high potential income above the poverty threshold level

A well manage 1-ha rubber plantation can derive an annual income from P79,200 to P231,300 per year.

Fruit Bearing Trees


Assorted fruit trees considered to produce lucrative returns for the farmers as well as the industry are being recommended


ANNUAL REFORESTATION DATA (1986-2013)

2011 Mangrove Plantation established in Baluno, Naga, Zamboanga Sibugay

NGP ACCOMPLISHMENT

1021110221100000000000000000000000000000000	Year	Area Reforested (ha)	
198739,811198864,1831989131,4041990191,663199193,039199240,593199319,211199449,551199565,233199646,096199766,237199842,368199942,166200027,632200131,441200225,620200315,087200420,333200516,56120067,223200727,839200843,609200954,789201036,8762011128,5582012221,763			
198864,1831989131,4041990191,663199193,039199240,593199319,211199449,551199565,233199646,096199766,237199842,368199942,166200027,632200131,441200225,620200315,087200420,333200516,56120067,223200727,839200843,609200954,789201036,8762011128,5582012221,763			
1989 131,404 1990 191,663 1991 93,039 1992 40,593 1993 19,211 1994 49,551 1995 65,233 1996 46,096 1997 66,237 1998 42,368 1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763			
1990191,663199193,039199240,593199319,211199449,551199565,233199646,096199766,237199842,368199942,166200027,632200131,441200225,620200315,087200420,333200516,56120067,223200727,839200843,609201036,8762011128,5582012221,763			
1991 93,039 1992 40,593 1993 19,211 1994 49,551 1995 65,233 1996 46,096 1997 66,237 1998 42,368 1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763			
199240,593199319,211199449,551P199565,233P199646,096P199766,237P199842,368P199942,166P200027,632P200131,441P200225,620P200315,087200420,333200516,56120067,223200727,839200843,609201036,8762011128,5582012221,763	-		
1993 19,211 1994 49,551 1995 65,233 1996 46,096 1997 66,237 1998 42,368 1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763			
1994 49,551 T 1995 65,233 T 1996 46,096 T 1997 66,237 T 1998 42,368 T 1999 42,166 T 2000 27,632 T 2001 31,441 T 2002 25,620 T 2003 15,087 T 2004 20,333 T 2005 16,561 T 2006 7,223 T 2007 27,839 T 2008 43,609 T 2010 36,876 T 2011 128,558 T 2012 221,763 T			
1995 65,233 1996 46,096 1997 66,237 1998 42,368 1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763			þ
1996 46,096 P 1997 66,237 P 1998 42,368 P 1999 42,166 P 2000 27,632 P 2001 31,441 P 2002 25,620 P 2003 15,087 P 2004 20,333 P 2005 16,561 P 2006 7,223 P 2007 27,839 P 2008 43,609 P 2010 36,876 P 2011 128,558 P 2012 221,763 P			Ĕ
1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763			5
1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763		66.237	בי
1999 42,166 2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763		42,368	Β
2000 27,632 2001 31,441 2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2010 36,876 2011 128,558 2012 221,763			
2002 25,620 2003 15,087 2004 20,333 2005 16,561 2006 7,223 2007 27,839 2008 43,609 2009 54,789 2010 36,876 2011 128,558 2012 221,763	2000		Ď
200315,087200420,333200516,56120067,223200727,839200843,609200954,789201036,8762011128,5582012221,763	2001	31,441	T
200420,333200516,56120067,223200727,839200843,609200954,789201036,8762011128,5582012221,763	2002	25,620	
200516,56120067,223200727,839200843,609200954,789201036,8762011128,5582012221,763	2003	15,087	
20067,223200727,839200843,609200954,789201036,8762011128,5582012221,763	2004	20,333	
200727,839200843,609200954,789201036,8762011128,5582012221,763	2005	16,561	
200843,609200954,789201036,8762011128,5582012221,763	2006	7,223	
200954,789201036,8762011128,5582012221,763	2007	27,839	
201036,8762011128,5582012221,763	2008	43,609	
2011128,5582012221,763	2009	54,789	
2012 221,763	2010	36,876	
	2011	128,558	
2013 332,748	2012	221,763	
	2013	332,748	

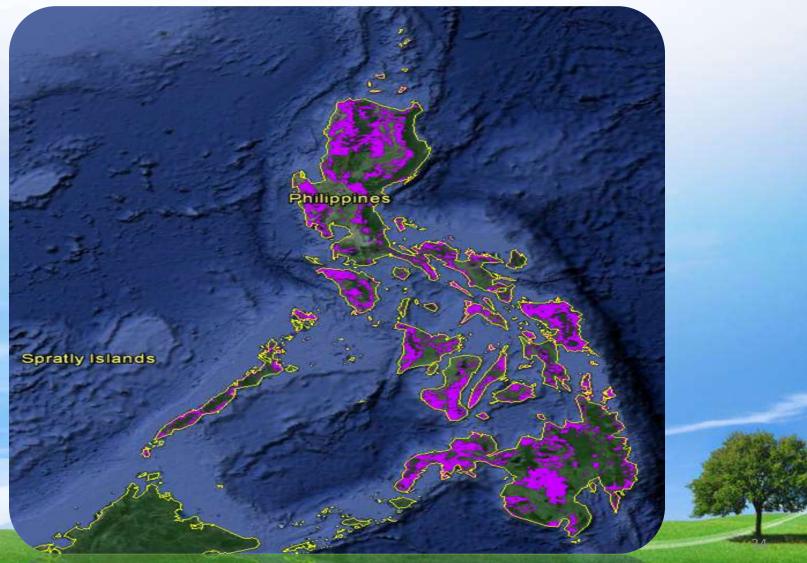
NGP ACCOMPLISHMENT

Jobs Generations

YEAR	Target (ha)	Total Area Planted (ha)	% Accom	* <u>No. of Job</u> <u>Generated</u>	* <u>Persons</u> Employed
2011	100,000	128,558	129%	335,078	47,868
2012	200,000	221,763	111%	380,696	55.146
2013	300,000	332,748	111%	456,386	65,198
Total	600,000	683,069	114%	1,172,160	168,212

*Source: Office of the Undersecretary for Policy & Planning

Tinago, Calbiga, Samar


Mt. Malindang

Paluan, Occ. Mindoro

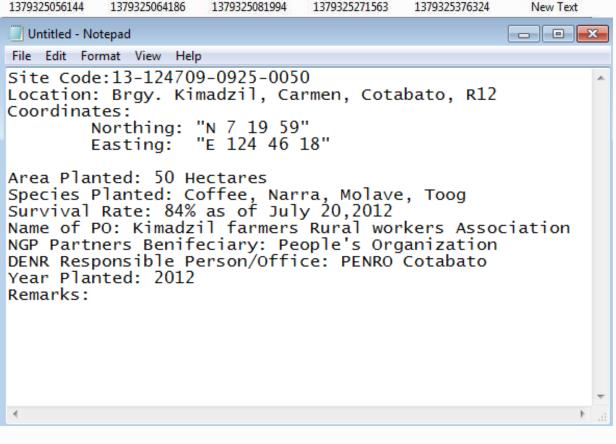
MEASURES FOR NGP

1. Mapping and Site Validation of NGP target area

2. PROGRAM SITES GEO-TAGGED

1379325011675

1675 13793



Geo-tagged photo taken using GEOCAM

3. WEB BASED ACCESS TO NGP CODED MAPS AND GEOTAGGED PHOTOS

1.5 billion bees covering 1.5 million hectares HOME ABOUT HGP PLANTING SITES REFERENCE MATE		GALLERY	NEWS	CONTAC
The Commodity Roadmap And The Ten Most Plante		Narra Mahogane Bokuza Robies Fatosta Gongina Gongina Gaugia Roatie mangiane Nargha		
geographical area's peculiar soil and climate render it ideal for h proforestry crops. In the National Greening Program, these factor				ees as v
Read more	e way to poverty alleviation			uing ecc
development, environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmental rehabilitation and food security that paves the Rest environmentation and food security the Rest environmentation and food security that paves the Rest environmentation and food security the Re	e way to poverty alleviation	701		uing ecc
www.ngp.d	e way to poverty alleviation	201	<u>v. p</u>	aling eci

Site Profile

National Greening Program
NOW ADDITION PLANTING STEP REFERENCE INTERALS REPORTS GALLERY NEWS CONTACT US
LGU Uyugan
Site ID: 11-020900-0028-003 Address: Imnajbu, Uyugan, Batanes Area in hectares: 3.11 Has Commodity/Species Planted: Eraog Year Planted: 2011 NGP Partner Beneficiaries: LSU Uyugan Photos
View In Google Earth
material Plugin Version 7.5.3.048
LEGEND

NATIONAL GREENING PROGRAM

4. Map coding of all NGP Sites in accordance to PSGC accesible through the NGP Website (<u>www.ngp.denr.gov.ph</u>)

	NGP CODE FORMAT					
	YFΔR	ESPONSIBLE R FIELD OFFICE	PLANTING SITE NUMBER	AREA		
YY RI		RPPCC	NNNN	AAAA		
CODE	CODE NAME	DESCRIPTION				
YY	Year	code based on the last two digit numbers of the year when the NGP plantation was established				
RRPPCC	Responsible DENR Field Office	code based on the Philippine Standard Geographic Code (PSGC)* for each DENR Field Office responsible for the site				
NNNN	Planting Site Number	code based on assigned numeral by continuously numbering all NGP Plantation Sites established for the specific year per Region				
ΑΑΑΑ	Area	code based on the area of the NGP Planting Site in hectares rounded off to the nearest ones				

NGP PLANTING SITE CODING SYSTEM

Example:

12.4 hectares, NGP Plantation Site 342, established on June6, 2011 in Jones, Isabela .

	YEAR	REGION	PENRO	CENRO	PLANTATION NUMBER	AREA
SITE DETAILS	2011	Cagayan Valley	Isabela	Jones is under CENRO San Isidro	342	12.4
SITE CODE	11	02	31	29	0342	0012

NGP PLANTATION SITE CODE 11-023129-0342-0012

RECENT DEVELOPMENTS

RECENT DEVELOPMENT

Modern & Mechanized Forest Nursery

Establishment of Modern and Mechanized Forest Nurseries (MMFN) in 16 regions for the 1 Million seedling production target per day by the end of 2014

□ 5 initial sites with on-going construction

- 1. Bicutan, Taguig City (NCR)
- 2. Solana, Cagayan (Region 2)
- 3. Sipocot, Camarines Sur (Region 5)
- 4. Ayungon, Negros Oriental (Region 7)
- 5. Bislig, Surigao del Sur (Region 13)

Profile & Potential of the Initial Sites

Cont....Mechanized

Nurseries

Nursery Site	Total Area (ha)	Production Area (ha)	Seedling Production Capacity (M)	Released SAA (M)	Development Cost (P)/ SQ.M.	Production Cost (P) / Seedling
NCR						
Bicutan, Taguig	1.5	1.0	5.0	16.8	1,680.00	3.36
Region 2						
Solana, Cagayan	5.0	2.5	12.5	34.0	1,360.00	2.72
Region 5						
Sipocot,						
Camarines Sur	10.0	7.0	35.0	31.3	447.00	0.89
Region 7						
Ayungon, Negros						
Oriental	10.0	8.0	40.0	79.3	991.00	1.98
Region 13						
Bislig, Surigao del						
Sur	5.0	4.0	20.0	40.4	1,010.00	2.02
Total	31.5	22.5	112.5	201.8		C. Mark
Average	1,098.00	2.20				
Average development & seedling production cost/sq.m.					897.00	1.79

Cont....Mechanized Nurseries

New Sites for Year 2014

		Ar	rea (ha)	Seedling
Region	Location	Total	Production	Capacity (M)
4A	Brgy. Llavac	5.4	2.2	12.0
	Real, Quezon			
4B	Brgy. Pinagtuliran	13.0	5.2	26.0
	Sta. Cruz, Occidental Mindoro			
9	Brgy. Baclay	5.0	2.5	12.5
	Tucuran, Zamboanga del Sur			
10	Brgy. Sumpong	2.5	2.0	10.0
	Malaybalay, Bukidnon			
12	Brgy. Amas	10.0	5.0	25.0
	Kidapawan, North Cotabato			
	TOTAL	35.9	16.9	85.5

Five (5) proposals were returned to the Regions for reidentification of new sites

One (1) site for revalidation due to Typhoon Yolanda

MMFN Establishment, Ayungon, Negros Oriental (Region 7)

Installation of Fabricated Construction Materials

MMFN Establishment, Ayungon, Negros Oriental (Region 7)

Fabrication of Railings & Palettes

MMFN Establishment, Solana, Cagayan (Region 2)

Establishment of Bench Terracing & perimeter fencing

Green House Germination& Propagation Chambers

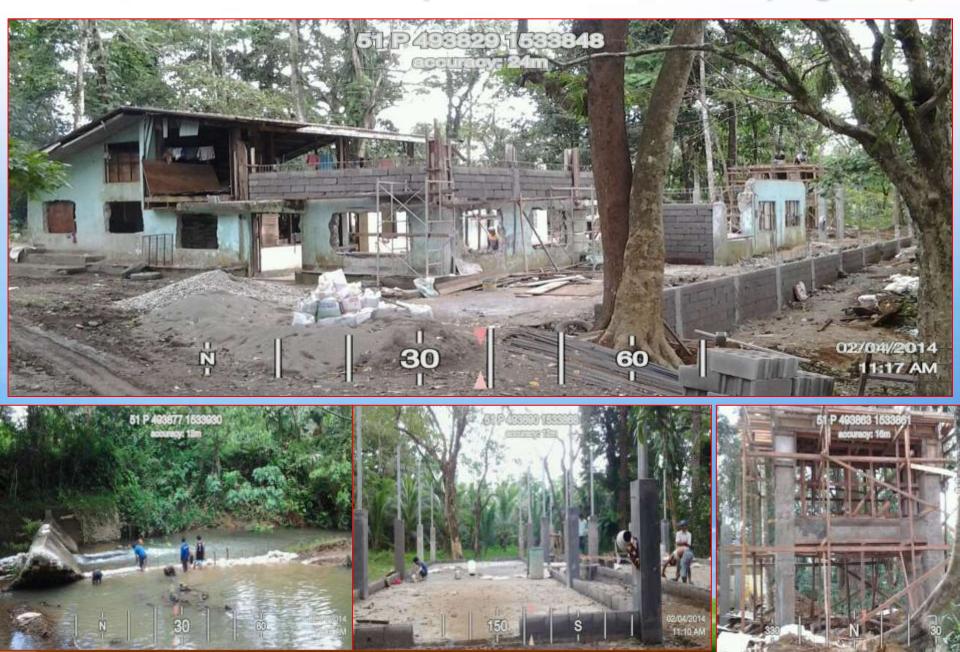
Seeder Building

MMFN Establishment, DOST Compound, Bicutan, Taguig City (NCR)

Greenhouse (Propagation and Germination Building)

Seeder Machine Building

MMFN Establishment, Bislig, Surigao del Sur (Region 13)


Seeder Machine Building

Growing Area

Greenhouse Building

MMFN Establishment, Sipocot, Camarines Sur (Region 5)

Support Activity to Mechanized Nurseries

- Total target of 75 Seed
 Production Areas (SPAs)
 for establishment or
 development
- 64 existing SPAs
- 31 of which are identified as potential SPAs
- Production capacity of
 2.94B seeds/seedlings

Implementing Region	No. of Clonal Facility	CLONAL NURSERY	Recent Development continuation
TOTAL	22	22 DENR–managed clonal nurse	eries
NCR	1	Region 2	
CAR	1		
R1	1		
R2	2		
R3	1	rion 9	
R4A	1		
R4B	1		
R5	1		AND THE ALL AND A
R6	3		
R7	1		
R8	1	Region 8 Region 6	
R9	1		
R10	1		Region 11
R11	2		
R12	1		
R13	2		
ERDB	1	Region 10 Region 7	A CONTRACT OF A

22 DENR–managed clonal nurseries

About **1.17M** clones are expected to be produced on a 3 cycle/yroperation from the DENR facilities

Implementing Unit	Projected Clone Production	
TOTAL	1.17M/yr	
NCR	10,000	
CAR	18,000	
R1	22,500	
R2	90,100	
R3	22,230	
R4A	16,380	
R4B	6,750	
R5	30,000	
R6	118,402	
R7	78,930	
R8	119,808	
R9	70,500	
R10	47,280	
R11	191,943	
R12	173,622	
R13	71,100	
ERDB	1- 78,000	

Implementing Unit	No. Of Partner SUCs	Clonal Nurseries in SUCs (2011-2012)
TOTAL	17 (2011- 2012)	 Fourteen (14) already completed Three (3) 90-95% completed
NCR		About 1.1M-1.36M clones are expected to
CAR	2	be produced annually
R1	2	
R2	1	
R3	3	
R4A	1	
R4B	1	
R5	1	
R6		BISU, Region 7 PAC, Region 3
R7	2	NORSU, Region 7
R8	1	
R9		ISU, Region 2
R10		
R11	1	
R12	1	
R13	1	CSU, CARAGA

SUCs' CLONAL NURSERIES (2013)

Regions Involved	SUC	Status
	TOTAL = 9	
	Aklan State University (ASU)	9 MOA signed
	West Visayas State University (WVSU)	1 (VSU) for
	Capiz State University (CAPSU)	assessment
6	Central Philippines State University (CPSU)	
	Guimaras State College (GSC)	
	University of Antique (UA)	
	Western Visayas College of Science and Technology (WVCST)	
8	Visayas State University (VSU)	
10	Central Mindanao University (CMU)	
3	Bulacan Agricultural State University	

MOA signing with various SUCs in R6

SUCs Clone & Production of Quality Planting Materials (QPM)

Support Activities to Clonal Nurseries

ERDB's Developed Indigenous VA Mycorrhizal Technology Matures for Nationwide Utilization

Ecosystems Research & Development Bureau, DENR

Earliest exploration works on the biodiversity of Philippine vesicular-arbuscular mycorrhiza in rhizosphere of pristine tropical forests, mangrove areas and in old plantations were conducted by ERDB researchers in 2000.

From 2003 to present, pure monospecies mycorrhizal local isolates were screened

Pilot tested different host plants in the nursery and in the field

...developed into biofertilizer product

Mass Production of Mycorrhizal Inoculants at UPLB Science and Techno Park

ESTABLISHMENT OF NATIONAL RUBBER BUDWOOD **GARDEN IN PARTNERSHIP WITH THE PROVINCIAL GOVERNMENT OF NORTH COTABATO**

MEMORIA

ANOW ALL MEN BY THESE This Municipation of Advan-

The DEPARTMENT RESOURCES a rational gov under the laws of the Ridge address at Weaklos Avenue ON Secondary RAMON 28: Pd

The PROVINCIAL LOC duty organized and existing Philippins with principal of represented herein by its o MENDOZA Internetwork ASOGNEM

WHEREAS, HIS EXCERN Response Order No. 26 on 2 inglementation of the Nation provely for poverty reduction. climate charge mitpation and

WHEREAS. TO 25 pro ufforts and similar etilistams, the civil accurly.

WHEREAS. The NOP foreetkands (production and) areas, ancestral domains, divithe greening plant of the UGU maerborrike, stream banks and

WHEREAS, THE DENI manufated for the pore-webling of the country's environment a DEAR as the lead agency thits

WHEREAS, the DENR contempolity props to be plan economic potential and at the

Section 12 in case any provider in this agreement is found to be involid Elegal or unerforcentie in any request the same shall not about the valuably legently or entertainbury in the semanting provincing of the

Bection 13. If either carty freeto is temporarily unable to meet any of as uplegators under this Aquinement by highest an overc constrainty force inspours, the obligation of the party affected shall be suspended unit out. tarte on the event of force majorize that have opposit

IN WITNESS WHEREOF the parties served spice allosed that respective approximatives Han City, Philadmen 潮花山

DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

PROVINCIAL LOCAL GOVERNMENT UNIT - COTABATO

Cido strand

RICARDOL CAL DERON

National Courdinator, NGP

ANDREW B. PATRICIO, JR.

CIC-PENNO. North Cotabate

Director

Group

Signed in the Presence of

CONTRACT Forest Management Bureau and **Popythiai Technical Working**

ALFONSO POR F. SANDKURE Provincial Andrew Consultant

□ Source of bud eye for budding rubber stocks in the production of superior planting materials from recommended clones

Will lead to an increase in yield and early tapping of rubber sap

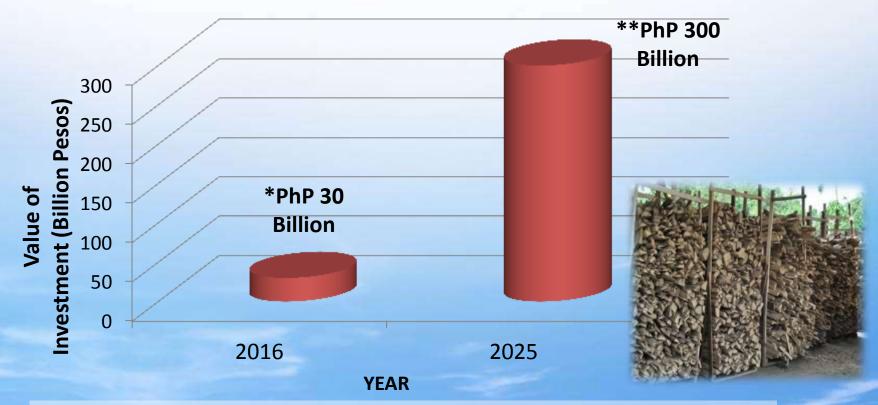
NATIONAL RUBBER BUDWOOD GARDEN)

Rubber Species Planted – Cloned PB 260 & PB 330
 1 hill can produce 10 bud eyes

- No. of hills planted in 3-ha area is 13,335
- □ The garden can produce up to 880,100 bud eyes annually

05/21/201

2014


PM

Actual Size

EXPECTED OUTCOME

EXPECTED PROGRAM OUTCOME

10-year Financial Return of Investment

* 1.5 Billion seedlings in 1.5 Million ha.

** 150 million seedlings (assuming 10% harvestable at year 10)

1 Tree = 1 cubic meter

1 cubic meter = Php 2,000 per cubic of Fuelwood □ equal to ₱300 Billion in 10 years vs. ₱30 Billion investment

NGP as a Vehicle for Inclusive Growth

(Based on the engagement of the Program)

₱ 14 B
 Materials
 and
 Facilities

₱ 16 B
Wages

More than half of the 2011-2016 National Greening Program budget of 30 Billion directly benefits the upland communities/Peoples Organizations

P30 Billion Investment

Department of Environment and Natural Resources Visayas Avenue, Diliman, Quezon C

Thank Joi

Panubigon, Surigao City, Surigao del Norte 2011 Mangrove Plantation